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The Ditferenee Fourier Technique in Protein Crystallography: Errors and their Treatment 
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An expression is derived for the error which arises from the use of the difference Fourier technique. 
Errors due to the use of inaccurate values of AF and phase are considered in addition to those due to the 
difference Fourier technique itself. It is shown that a difference Fourier map is able to detect much 
smaller features of electron density than those revealed by a normal Fourier map with the same phases. 
The experimental conditions required to obtain difference maps in which the error level is minimized 
are outlined. 

Introduction 

Many types of difference synthesis have been used in 
the derivation and refinement of crystal structures. With 
structures in which individual atoms are resolved, dif- 
ference syntheses which compare the observed struc- 
ture amplitudes with those derived from a trial struc- 
ture are often employed. With proteins and other large 
structures, the resolution attained is less than that 
required to position individual atoms and the phases 
of the structure factors are usually obtained by the 
multiple isomorphous replacement method. Because of 
the method of phasing and the difficulty in refining 
protein structures, a type of difference synthesis, which 
we refer to here as the difference Fourier synthesis, has 
proved to be a very valuable method of determining 
the structures of isomorphous derivatives of a protein 
whose crystal structure is known. The power of the 
method lies in its use of the phases of only one struc- 
ture to investigate a large number of similar structures, 
for which only the amplitudes of the structure factors 
need be measured. It has been successfully applied to 
such problems as ligand binding in myoglobin (Stryer, 
Kendrew & Watson, 1964; Nobbs, Watson & Ken- 
drew, 1966) and haemoglobin (Perutz & Mathews, 
1966), substrate-protein interactions in lysozyme (John- 
son & Phillips, 1965; Johnson, 1967), e-chymotrypsin 
(Sigler, Jeffery, Matthews & Blow, 1966; Steitz, Hen- 
derson & Blow, 1969), carboxypeptidase Ae (Steitz, 
Ludwig, Quiocho & Lipscomb, 1967; Lipscomb, Hart- 
suck, Reeke, Quiocho, Bethge, Ludwig, Steitz, Muir- 
head & Coppola, 1968) and ribonuclease S (Wyckoff, 
Hardman, AlleweU, Inagami, Johnson & Richards, 
1967), chemical modification of certain residues of 
haemoglobin (Moffat, 1971) and lysozyme (Blake, 1967) 
and in the derivation of the positions of heavy atoms 
for use in phase determination. 
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In most cases the difference maps are used directly 
without further checking or refinement. Since the de- 
duction of the mechanism of action of proteins depends 
critically on the interpretation of these difference Fou- 
riers, it is important to estimate the statistical signi- 
ficance of each feature. In particular, certain small 
features which are dismissed as noise in an over cau- 
tious interpretation, may contain significant structural 
information. The derivation of the statistical signifi- 
cance requires a knowledge both of the error level and 
its distribution in the unit cell, and the effect of errors 
on the peak heights of features. These are determined 
here by considering the origin and nature of the various 
errors in a difference map. We show that the difference 
Fourier technique is extremely sensitive to small chan- 
ges in electron density and is capable of revealing more 
subtle features of the electron density than those appa- 
rent in a normal Fourier map obtained with the same 
phases. The experimental approach which leads to the 
optimum use of the difference Fourier technique is 
outlined and the limitations of the method are dis- 
cussed. 
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Fig. 1. Argand diagram showing the relationship between the 

parent and derivative structure factors. The structure factor 
f represents the difference structure. 



R. H E N D E R S O N  AND J . K .  M O F F A T  1415 

The difference Fourier synthesis 

The difference Fourier technique is used here to refer 
to the computation of a Fourier synthesis whose coef- 
ficients are m(IF/-/[- [FI) exp [&] where ]FH] and ]FI are 
the measured structure amplitudes of two similar non- 
centrosymmetric structures, c~ is the phase of F, and 
m is a weighting factor (Dickerson, Kendrew & Strand- 
berg, 1961) used to weight down terms where c~ is not 
well determined. Fig. 1 shows the relationship between 
f = F H - F ,  A F = I F M - I F [  and the two structure fac- 
tors. 

A Fourier synthesis using f as coefficients would give 
the desired difference in electron density between the 
two structures directly. Since f is not accessible experi- 
mentally, the difference Fourier synthesis calculates 
an approximation to this difference in electron density. 

When AF and Ifl are small compared with IF[, the 
difference Fourier coefficient m A F  exp [&] represents 
the vector component of f in the direction of F but 
includes no component perpendicular to this direction. 
It has been pointed out previously (Stryer et al., 1964; 
Hoard, 1967) that when [fl is not small compared with 
iF[, then this relationship no longer holds. The phases 
of F and Fit are different and the measured value of 
AFis  no longer the component o f f  in the direction ofF.  

For the heavy atom method, which is formally iden- 
tical, it has been shown (Woolfson, 1956; Sim, 1959, 
1960) that reflexions for which Ifl ~ IFI does not hold, 
should be treated by reducing the magnitude of IFM 
in the difference synthesis in accordance with its prob- 
ability of having a different phase from F. This can 
lead to considerable improvement in the resulting Fou- 
rier map, particularly when Ifl and IFl are comparable 
in magnitude for a significant fraction of the terms. 
Such a situation may arise, for example, if the total 
scattering from a number of heavy atom sites is com- 
parable with that from the protein itself. In more 
routine protein crystallographic work we have found 
that the number of reflexions which are significantly 
affected by the use of such a weighting scheme seldom 
exceeds 10 to 15 per cent of the total. Moreover, the 

Fig. 2. Argand diagram showing the probability distribution 
of f for a given observed AF in the absence of experimental 
errors. 

phases of these reflexions (which generally have small 
and inaccurate values of [FI) are poorly determined by 
the isomorphous replacement method. In practice, 
therefore, it does not much matter whether these terms 
are omitted from or included in the Fourier synthe- 
sis. 

The condition that Ifl'~ IFI applies to the remainder 
of the reflexions. For simplicity, we have chosen to deal 
with difference Fourier maps where this is true for all 
reflexions. In practice, this includes all the difference 
maps referred to in the introductory paragraph and 
those named in Table 1. 

Origin and magnitude of errors 

We define the 'true' difference structure as the Fourier 
transform of the complex structure factors, f. Thus, we 
do not consider errors due to differences in reciprocal 
lattice parameters or series termination. 

The three sources of error in difference Fourier maps 
with which we are concerned are: 

(i) use of the difference Fourier coefficients m A F  
exp [&] instead of the true but unobservable structure 
factors, f; 

(ii) experimental errors in the AF values; and 
(iii) experimental errors in the phases, e, of the par- 

ent structure factors. 

To assess the effects of these three sources of error 
on the electron-density map, we calculate the resulting 
root-mean-square (r.m.s.) error in electron density 
averaged over the complete unit cell. Since the maps 
take the form of continuous functions of varying shape 
with no possibility of resolving individual atoms, this 
seems the only sensible way of estimating error. The 
approach is similar to that of Cruickshank (1949) and 
Blow & Crick (1959). The error in the map is defined as 
the r.m.s, difference in electron density between the 
'true' structure and that obtained in practice. This type 
of error is not the same as truly random error defined 
as being independent of position in the unit cell, since it 
includes a contribution due to systematic reduction 
in the peak heights of all features, as will become 
apparent. We calculate first the overall error in electron 
density. 

(i) Intrinsic error in the difference Fourier method 

Consider the case where IFI and IFM are accurately 
known and e, the phase of F, is also well determined. 
An Argand diagram of the vector of length AF in the 
direction of F is shown in Fig. 2. Since the true value 
of f is not known, we must consider the probability of 
different values of f. Such a probability distribution is 
also shown in Fig. 2, possible values of f lying on a 
line at right angles to F. Estimation of the error then 
requires calculation of the radius of gyration, r, of this 
probability distribution (cf. Blow & Crick, 1959). 

If we assume that, over all reflexions, the phases of f 
and F are uncorrelated so that the probability distri- 
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butions of the components of f parallel and perpendi- 
cular to F are the same (and this assumption is valid 
for If[ ~ IF[), then since AF is the parallel component 
and r is dependent only on the perpendicular compo- 
nent, 

~ ~ r 2 =  ~ ~ A F  2 (la) 

summed over all reflexions. 

.'. (r 2) = (AF2) .  (lb)* 

Hence, using the derivation of equation (26) in Blow & 
Crick (1959), the mean-square error in electron densi- 
ty in the difference Fourier synthesis is given by 

2 +oo +oo +oo 

h = O k = - c o l = - m  

which, using equation (la), becomes 

2 
(AQ2) = --VT ~ ~ ~ d e  2 (3) 

where the limits of summation here, and subsequently, 
are those indicated in equation (2). 

(ii) Error in the measurement o f  AF 
We now consider the effect of experimental inaccu- 

racy in AF, giving rise to an r.m.s, error, ft. Fig. 3 
shows the probability distribution of f including the 
uncertainty in AF. Since the probability distribution 
is now made up of two independent components at 
right angles, 

(, r 2) = ( AF z ) + (d 2 ) (4) 

and the overall mean-square error in electron density 
becomes 

2 
( A02)= --V T E ~ ~, (AF2+a2) • (5) 

(iii) Error in the phase ~ of  the structure factor F of  the 
parent structure 

The probability distribution of f  will now be as above 
but folded with the probability distribution of the 
phase, ~. For example, Fig. 4 illustrates a case where 

has a sharply bimodal distribution. As shown by 
Blow & Crick (1959), the use of the centroid phase will 
give the overall least-square error in the synthesis, 
where m is the centroid weight and ~ the centroid phase. 
Again, to estimate the magnitude of the error we must 
calculate the radius of gyration of this probability map. 

Let the probability of the true phase of F differing by 
A~0, from ~ be P~. The definition of m, the centroid 
weight or figure of merit is 

Pl cos Af& 
i 

m =  ~ Pt (6) 
i 

* The symbols (LIF 2) and (AO 2) are used as a convention to 
denote ((AF)2) and ((AO)2), the mean-square values of AF and 
AO. 

where the summation is over all possible phase angles, 
c~+A~0 t (Dickerson et al., 1961). 

In this case the radius of gyration rtot is obtained by 
considering the contribution to rtot of distributions 
with all possible phases. The contribution of the dis- 
tribution with phase e+A~0~, to the radius of gyration 
is 

Ar2ot = P, (r 2 +et 2) (7) 

where r is the radius of gyration of the distribution 
with phase (~.+A~0~) about its centroid and e~ is the 
length of the vector joining the centroid of the whole 
distribution to the structure factor with phase (~ + A~g). 
Summing over all possible phases, 

2 Y. Pi 1"2 Pi 
r2ot - i i + e, (8) 

i i 

= rZ+AF 2 ( 1 - m  z) (9) 

since in the first term of equation (8), r 2 is independent 
of A~0~, and the second term is identical to the expres- 
sion (16) derived by Dickerson et al. (1961). 

From equation (4), 

(,'2) = (AF2) + (J2) 

\ \  

f 
Fig. 3. Argand diagram showing the probability distribution 

of f for a given observed AF including an r.m.s, error, 6, in 
the observation. 

Fig. 4. Argand diagram showing the probability distribution 
of f for a given observed AF including errors both in the 
magnitude of AF and in the phase of the parent structure 
factor. The dotted line is the phase probability distribution 
of the parent structure factor. 
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so that the overall mean square error in electron 
density becomes 

(Ao2)= 2 V2 ~ ~ ~ {Arz(2-m2)+62}. (10) 

This final expression for the total mean-square error 
in the difference synthesis is closely related to the 
expression for the error in a normal Fourier map ob- 
tained by the method of isomorphous replacement, re- 
produced in equation (11) (Blow & Crick, 1959; 
Dickerson et al., 1961). 

2 (A02) = V~-~ Z ~ {[Fl2(1-m2)+fi2} " (11) 

It is important to note that the mean-square errors 
given by equations (10) and (11) strictly refer to the 
mean-square differences in electron density between 
the perfect crystal structures (that is, determined using 
perfect phases and amplitudes) and those obtained 
using experimentally measured phases and amplitudes. 
They do not necessarily refer to the noise level to be 
expected in featureless regions of the difference Fou- 
rier and Fourier syntheses respectively. For instance, 
if all figures of merit were zero (phases undetermined), 
all syntheses would be zero everywhere, but would have 
large mean-square errors as given by equations (10) 
and (11). 

Height of peaks 

A second problem remains: what is the height of the 
signal peak? For instance, if m = 1 (perfect phases) or 
if m=O (random phases), then the mean-square error 
differs only by a factor of two yet in one case the map 
is good and in the other it does not exist. Clearly, it is 
useful to know the height of the peak relative to its 
theoretical height in an accurate Fourier or difference 
Fourier synthesis with perfect phases and amplitudes. 

In the case of a Fourier synthesis with less than 
perfect phases, any peaks will be smaller than those 
obtained in a similar synthesis using perfect phases. If 

Z~ i mF 

IFI 

Fig. 5. Argand diagram showing the contribution of the vector 
mF to the structure factor whose phase is separated from it 
by an angle Acp~. 

m is assumed to be the same for all reflexions, it is 
possibl e to predict how the peak height will vary 
with m. The contribution of the structure factor 
mlF[ exp[i~] to the unknown correct structure can be 
estimated by taking the mean of its contribution to 
all possible structures. The contribution of mlF[exp[ia] 
to the structure whose phase is separated from it by 
A~o~ has an amplitude mlF[ cos A~0~ (Fig. 5). 

Hence, the mean contribution ofm]F] exp [ie] to the 
true structure is given by 

Pi mlF[ cos A~0 i 
' (12) 

E Pi 
i 

Pt cos Act 
= miFl / 

Y Pt 
i 

= m2]FI (13) 

using equation (6). 
The structure synthesized from the Fourier coeffi- 

cients mlFI exp [ia] will therefore have a peak height 
o f  m 2 relative to the true structure. In practice, howev- 
er, m is not the same for all reflexions. Apart from fluctu- 
ations from one reflexion to another, its average value, 
(m),  is a complicated function of sin20/)~ 2 and IFI 
depending on the distribution of the experimental 
errors (Blow & Crick, 1959). However, the above 
approximation gives some feeling for the effect of varia- 
tion of (m)  on the peak height of features. If an 
accurate estimate of peak height is required, a numeri- 
cal summation of the Fourier components with the 
appropriate distribution of values of (m)  would be 
necessary. 

It has also been shown (Luzzati, 1953) that the peak 
heights of atoms (in a non-centrosymmetric Fourier 
synthesis) not included in the phasing depends on the 
number of atoms excluded, but when that number is 
small, the peak heights of these atoms are reduced by 
one-half compared with atoms included in the phasing. 
This is equivalent to showing that peaks in a difference 
Fourier synthesis have half their theoretical height, and 
indeed, this can easily be shown by a similar argument 
to that used to derive equation (13). If the true differ- 
ence vector is f, then the measured value of AF will be 
If[ cos 0, where 0 is the angle between f and F (Fig. 1). 
The contribution of Ifl cos 0 in the direction of f is 
Ifl cos 2 0. Over all reflexions the mean contribution will 
therefore be (cos 2 0)=½ since 0 can take all values 
between 0 and 2zc with equal probability (again pro- 
vided Ifl ~ IFI). 

It follows that, since the peak height reductions due 
to phasing inaccuracies and to the difference Fourier 
approximation are independent, the peak heights of 
all features in the difference map will be roughly ½(m z) 
relative to their theoretical values. 

Thus in any real difference Fourier map the height 
and integrated electron content of all features will be 
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less than in a perfect map. The mean-square electron 
density difference between the real and the perfect map 
given by equation (10) thus arises f rom a contr ibut ion 
which is everywhere random, that is, independent of  
position in the unit  cell, and a contribution which is 
due to the systematic reduction in the height of  the 
peaks. Equat ion (10) therefore overestimates the truly 
r andom errors in the map, which may be judged for 
instance by examining featureless regions. This can also 
be seen f rom an Argand diagram such as that shown in 
Fig. 2 or Fig. 4. The error vector between the 'true' 
structure factor f and the component  AF which is 
actually used to compute the map  can be resolved into 
components  parallel  and perpendicular  to f. The parallel 
component  systematically reduces peak heights whereas 
the perpendicular  component  is truly random. 

Equat ion (10) can be improved by calculating the 
mean-square electron density difference between hal f  
the 'true' structure, that is, the t ransform of the struc- 
ture factors f/2 (the best that can be done in practice) 
and the experimentally derived structure. Following 
similar arguments to those above, 

2 {AFZ(2-m2)+J 2} 

= V z E E E {AF2(2-mZ)+d2} " (14) 

It is this formula  which provides the best estimate of  
noise level in a difference map. However, a l though 
equation (14) is exact, it will still overestimate the 

• r andom error when the average figure of merit  is low. 
It is worth emphasizing briefly two of the points 

discussed above which are also relevant to the inter- 
pretat ion of  Fourier  maps  of proteins obtained by the 

method of  multiple isomorphous replacement. First, 
i f  equation (11) is used to estimate the error in a map,  
the resulting figure does not  represent r andom error 
except when the average figure of merit  is near unity. 
It is worth while bearing this in mind  when an assess- 
ment  of  the significance of  any feature is made. Sec- 
ondly, the peak heights of  features in the map  will be 
approximately (m z) times their ' true'  value, depend- 
ing somewhat on the shape of the feature and the 
distribution of  ( m )  with sin 2 0/22 and IFI. This could be 
a useful check on the true quali ty of  any Fourier  map.  

Comparison with experimental difference maps 

To check whether equation (14) accurately represents 
the error level in a real difference Fourier  map, five 
high resolution difference maps  obtained from deriva- 
tives of crystalline e-chymotrypsin and four f rom hae- 
moglobin  were analysed in detail. Table 1 gives a 
summary  of the relevant data. Compar ison  of  the error 
predicted by equation (14) with the r.m.s, electron 
density in featureless regions of  the map  gives remark- 
ably good agreement. 

There are several reasons why the agreement is not  
exact. We have already demonstrated that  equation 
(14) always overestimates the truly r andom error parti- 
cularly when the phases are poorly determined. This 
would mean  that the r.m.s, electron density in feature- 
less regions of the map  should always be slightly less 
than that given by equation (14). In the maps  shown 
in Table 1, however, the r.m.s, density appears to be 
slightly greater than that given by equation (14). This 
could be due to the presence of  real features which are 
below the noise level. Indeed, this is the hazard of  
using an apparently featureless region of  a map  to 

Table 1. Analysis of some difference Fourier maps for derivatives of a-chymotrypsin and haemoglobin 

Equation (14) has been used to calculate (AO2)ll 2 for the difference maps and the formula of Dickerson et aL, (1961) for the 
parent maps. Observed r.m.s, errors were obtained by calculating the r.m.s, electron density in featureless regions of each map. 
All electron densities are in e.A-3. The columns headed (s.d.) simply give the electron densities as a multiple of the calculated 
r.m.s, error (AoZ)l/Z. Thus, the fifth column gives the ratio of the observed to the calculated error level. 

Also shown for comparison are the error levels in the corresponding maps of the native proteins. In the nine difference maps 
listed here, the error level is from 4 to 11 times lower than in the corresponding parent map. Taking into account the factor of 
½ in the relative peak heights of similar features, these difference maps have a signal-to-noise ratio which is from 2 to 5½ times 
better than in the corresponding maps of the native proteins. 

The nominal resolution of the chymotrypsin maps was 2.5 A and that of the haemoglobin maps, 3.5 A. The abbreviations 
used to name the maps are the same as those used previously (Steitz et al., 1969; Moffat, 1971). 

Map (AFobs)(J) Calculated Observed Observed Observed 
(d@2)l/2 r .m.s,  e r ro r  highest noise highest peak 

e. e. e.A-3 e.A-3 s.d. e.A-3 s.d. e.A.-3 s.d. 
tosyl-native CHT 71 33 0.044 0.048 1.1 0.14 3.2 0.67 15-2 
diox-native CHT 49 29 0.030 0.031 1.0 0.10 3.2 0.20 6-5 
f-L-tryp-native CHT 100 36 0"060 0"065 1"1 0"22 3"6 0"39 6"5 
f-L-phe-native CHT 90 31 0.050 0.059 1.2 0.16 3.1 0.29 5.8 
IA-native CHT 50 29 0.029 0.030 1.0 0-10 3.3 0-29 10.0 
Native chymotrypsin - -  - -  0.34 . . . . . .  

BME-oxyHb 57 - -  0.013 0.016 1-2 0.06 3.4 0.11 6.8 
AO-oxyHb 44 --  0.012 0.015 1.2 0-05 3.2 0.11 7.3 
SPIN-oxyHb 40 --  0.011 0.013 1.2 0.04 3-1 0 12 9-2 
CPA-oxyHb 100 - -  0-023 0.029 1.2 0.11 3.8 0.14 4.9 
Native oxyhaemoglobin - -  - -  0.12 . . . . .  
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estimate noise level. If there are no featureless regions 
then no exact estimate can be made. Moreover, it is 
easier to calculate an expression such as equation (14) 
routinely for each map than it is to select relatively 
featureless areas from which to estimate the error level. 
The agreement may also be made worse if the average 
figure of merit, used to calculate the error level in 
equation (14), does not reflect the true accuracy of the 
phasing procedure. It is well known that the average 
figure of merit in a protein structure determination is a 
poor guide to the quality of the Fourier map since it 
depends to a large extent on estimates of the accuracy 
of the structure factor measurements and on heavy 
atom temperature factors. This may be another reason 
for the slightly low calculated error, particularly for 
the maps of haemoglobin in which the average figure 
of merit was quite high (Perutz, Muirhead, Cox, Goa- 
man, Mathews, McGandy & Webb, 1968). 

Table 1 also lists the size of the highest noise peaks 
in the maps. Noise peaks were defined as peaks in the 
map which could not be explained in a reasonable 
stereochemical manner. In most cases, they were iso- 
lated peaks which occurred in the centre of the protein 
molecule. The heights of these noise peaks suggest that 
for high resolution difference maps, any features of 
greater than 3.5 standard deviations should be regarded 
as real, in agreement with the normal statistical prac- 
tice (Cruickshank, 1949). The final column of Table 1 
lists the heights of the highest peak in each map in 
terms of the number of standard deviations of the 
electron density. The exact statistical significance of 
each peak can then be determined. 

The above comparison shows that equation (14) is 
sufficiently accurate when used on real data with a 
range of different error levels. 

Conclusions 

We have examined the origin of errors in difference 
Fourier maps and shown that the terms in the syn- 
thesis should have the same weight as the correspon- 
ding terms in the parent synthesis. We may now ask 
how best the difference Fourier technique may be 
utilized in studying isomorphous structures. Several 
useful facts follow directly from the formulae. 

(1) The method can be used even when the diffe- 
rences AF are very small. Even if the r.m.s, value of AF 
is equal to the r.m.s, error (/~) in its measurement, the 
noise level will only be I/2 times the level for ideally 
accurate data. A corollary of this is that accurate meas- 
urements of the AF values become more important for 
smaller values of AF. However, for typical difference 
Fourier maps such as those in Table 1, accuracy of 
measurement of AF is not a limiting factor. Table 1 
shows the values of (~)  and (AFobs) in five typical 
difference Fourier maps of different derivatives of c~- 
chymotrypsin. For the worst case, that of the dioxan: 
chymotrypsin derivative where (~)  and (AF) are 
comparable, the error could not be reduced by more 

than 30 per cent by collecting really accurate values of 
AF. On the other hand if {AF) is too large, the 
signal-to-noise ratio will drop because the approxi- 
mation assumed at the beginning of this paper (AF~ IF]) 
will no longer hold. The peaks will then become less 
than half their theoretical heights (Luzzati, 1953). It is 
then an advantage to try to reduce {AF), perhaps by 
using partially occupied crystals, to a value where the 
condi t ionAF~ IFI applies or to use the weighting scheme 
of Woolfson and Sim. In practice, the compromise 
necessary between the condition that (AF)>(6) 
and that (AF)~(IF[) means that there is an opti- 
mum (AF)/(IFI) ratio which normally lies within 
the range of 2 to 20 per cent. 

(2) If there is only one site where the structures being 
compared are different (e.g. only one binding site for a 
small molecule) the occupancy of that site will not 
affect the signal-to-noise ratio as long as the criteria 
of (1) are obeyed, since both (A~Z)l/z and the peak 
height are proportional to (AF2)I/2 when there is 
only one site. 

(3) If there are several sites of substitution of a given 
ligand on the parent structure and interest centres on 
one of them (as often happens in practice), then it is 
advantageous to try to eliminate those sites which are 
not under consideration since by contributing to AF, 
they increase the noise level. For instance, in the diffe- 
rence Fourier map of f-L-tryptophan: chymotrypsin 
against native, shown in Table 1 (Steitz et al., 1969), 
the high noise level is due to the presence of several 
binding sites in addition to the one of interest at the 
enzyme's active site. A better map might be obtained 
either by using a lower concentration off-L-tryptophan 
to try to eliminate the other sites or by calculating a 
difference map between crystals soaked in different 
concentrations of  f z - t ryp tophan  such that only the 
binding site of interest became occupied as the concen- 
tration changed. 

Finally, we should like to emphasize that the diffe- 
rence Fourier technique is very sensitive, and that the 
results can be analysed in a completely quantitative 
manner. Since the error level is proportional to 
(AF2)I/2, normally a small fraction of the average 
structure factor (IFI) of the parent structure, com- 
parison of equations (14) and (1 I) shows that a diffe- 
rence Fourier map will normally have a much lower 
error level than the corresponding Fourier map of the 
parent structure. Even when the factor of ½ in the rela- 
tive peak heights of similar features is taken into 
account, in favorable cases, the difference Fourier map 
may contain significant features of electron density 5 
or 10 times lower than those in the corresponding 
Fourier map of the parent structure. This is borne out 
in practice (Table 1 ; Nobbs, 1966). 

We are very grateful to Dr D. M. Blow and Dr J. 
Greer for helpful discussions. This work was carried 
out while one of us (R.H.) was a Medical Research 
Council scholar. 
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The Crystal Strueture of DL-Ornithine Hydrobromide* 
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The crystal structure of DL-ornithine hydrobromide NH3(CH2)3. CH(NH+). COO-HBr has been deter- 
mined using three-dimensional visual intensity data obtained with Cu Ka radiation. The crystal belongs 
to the monoclinic system with cell dimensions a=9.388; b=7-901; c= 11.663/~ and fl= 109°50 '. The 
space group is P21/c. The structure has been refined using the full-matrix least-squares method. Final 
R value is 7.3 % for the observed data. All the hydrogen atoms have been located from a difference 
Fourier synthesis. The standard deviation for the positions of the non-hydrogen atoms is about 0.008 A. 
All bond lengths and angles are found to be normal. Both nitrogen atoms are protonated and the carbox- 
yl group exists in the ionic form. The conformation and other aspects of the molecule are discussed. 

Introduction 

The determination of the crystal structure of amino 
acids, peptides and related compounds forms part of a 
major programme of research on the molecular struc- 
ture of compounds of biological interest in this centre. 
Although ornithine is not one of the commonly oc- 
curring amino acids it is found in certain antibiotics. 
No detailed investigation of the structure of this com- 
pound appears to have been made earlier except in a 
complex form in ferrichrome (Zalkin, Forrester & 
Templeton, 1966). Therefore, it was decided to deter- 
mine its structure. However, when the present invest- 
igation was nearing completion the analysis of the 
structure of L-ornithine hydrochloride by another 

* Contribution No. 310 from the Centre of Advanced Study 
in Physics, University of Madras, Madras-25, India. 

group of workers (Chiba, Ueki, Ashida, Sasada & Ka- 
kudo, 1967) was brought to our notice. The final results 
of both these investigations are in good agreement. A 
note reporting the preliminary results of our present 
investigation has been published earlier (Kalyanara- 
man, 1967) and the full details are presented here. 

Experimental 

Crystals of DL-ornithine hydrobromide were obtained 
by dissolving DL-ornithine hydrobromide in a water- 
ethanol mixture and evaporating it under controlled 
humidity. Good crystals were obtained after several 
attempts; they were in the form of needles with a as 
the needle axis. 

The unit-cell dimensions, space group and other data 
of this compound were obtained by the use of Weis- 
senberg and Buerger precession techniques. The syste- 


